Open Source Large Language Model
Open-source large language models (LLMs) aim to provide accessible and customizable alternatives to proprietary models, fostering research and development while addressing concerns about data privacy and vendor lock-in. Current research focuses on adapting these models to specific languages and domains (e.g., Romanian, medicine, finance), improving their reasoning capabilities through techniques like retrieval-augmented generation and mixture-of-experts architectures, and optimizing their deployment efficiency on various hardware. This burgeoning field significantly impacts both the scientific community, by enabling broader participation in LLM research, and practical applications, offering cost-effective and adaptable solutions for diverse tasks ranging from question answering to code generation.
Papers
Adapting Large Language Models to Log Analysis with Interpretable Domain Knowledge
Yuhe Ji, Yilun Liu, Feiyu Yao, Minggui He, Shimin Tao, Xiaofeng Zhao, Su Chang, Xinhua Yang, Weibin Meng, Yuming Xie, Boxing Chen, Hao Yang
FD-LLM: Large Language Model for Fault Diagnosis of Machines
Hamzah A.A.M. Qaid, Bo Zhang, Dan Li, See-Kiong Ng, Wei Li