Optimal Transport
Optimal transport (OT) is a mathematical framework for efficiently moving probability distributions from one configuration to another while minimizing a cost function, often visualized as the "earth mover's distance." Current research focuses on developing robust and scalable OT algorithms, particularly for high-dimensional data and applications involving noisy or unbalanced distributions, often employing neural networks and Sinkhorn iterations. These advancements are significantly impacting diverse fields, including machine learning (e.g., generative modeling, domain adaptation), image processing, and even economic modeling, by providing powerful tools for data analysis, representation learning, and fair data manipulation.
Papers
Imitation Learning from Observation through Optimal Transport
Wei-Di Chang, Scott Fujimoto, David Meger, Gregory Dudek
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Alexander Kolesov, Petr Mokrov, Igor Udovichenko, Milena Gazdieva, Gudmund Pammer, Anastasis Kratsios, Evgeny Burnaev, Alexander Korotin