Panoptic Segmentation
Panoptic segmentation aims to comprehensively understand a scene by simultaneously segmenting and classifying all objects and regions, including both "things" (individual objects) and "stuff" (amorphous regions). Current research focuses on improving accuracy and efficiency, particularly in challenging scenarios like occlusion, dynamic environments, and open-vocabulary settings, often employing transformer-based architectures, mask-based methods, and diffusion models. This task is crucial for various applications, including autonomous driving, robotics, and medical image analysis, driving advancements in both model design and benchmark datasets.
Papers
Balancing Shared and Task-Specific Representations: A Hybrid Approach to Depth-Aware Video Panoptic Segmentation
Kurt H.W. Stolle (Eindhoven University of Technology)
CADSpotting: Robust Panoptic Symbol Spotting on Large-Scale CAD Drawings
Jiazuo Mu, Fuyi Yang, Yanshun Zhang, Junxiong Zhang, Yongjian Luo, Lan Xu, Yujiao Shi, Jingyi Yu, Yingliang Zhang