Person Re Identification
Person re-identification (ReID) focuses on matching images of the same individual across different camera views, a crucial task in surveillance and security. Current research emphasizes improving ReID's robustness to variations in appearance (e.g., clothing changes, occlusions, lighting), viewpoint, and even across different camera modalities (e.g., aerial and ground views), often employing transformer networks, graph convolutional networks, and generative adversarial networks to learn more discriminative and generalizable features. These advancements are driving progress in applications like video surveillance, robotics, and even privacy-preserving ReID systems, impacting both the accuracy and efficiency of person identification technologies.
Papers
Human Following in Mobile Platforms with Person Re-Identification
Mario Srouji, Yao-Hung Hubert Tsai, Hugues Thomas, Jian Zhang
DIOR: Dataset for Indoor-Outdoor Reidentification -- Long Range 3D/2D Skeleton Gait Collection Pipeline, Semi-Automated Gait Keypoint Labeling and Baseline Evaluation Methods
Yuyang Chen, Praveen Raj Masilamani, Bhavin Jawade, Srirangaraj Setlur, Karthik Dantu