Physic Informed Neural Network
Physics-informed neural networks (PINNs) integrate physical laws, typically expressed as differential equations, into neural network training to solve complex scientific problems. Current research focuses on improving PINN accuracy and efficiency through architectural innovations like Fourier-based networks, Kolmogorov-Arnold networks, and wavelet-based approaches, as well as advanced optimization strategies such as dual cone gradient descent and DiffGrad. These advancements aim to overcome limitations in handling high-frequency solutions, complex geometries, and stiff equations, ultimately enhancing the applicability of PINNs across diverse scientific and engineering domains, including fluid dynamics, seismology, and materials science.
Papers
Improving physics-informed neural networks with meta-learned optimization
Alex Bihlo
Topology optimization with physics-informed neural networks: application to noninvasive detection of hidden geometries
Saviz Mowlavi, Ken Kamrin
Symbolic Regression for PDEs using Pruned Differentiable Programs
Ritam Majumdar, Vishal Jadhav, Anirudh Deodhar, Shirish Karande, Lovekesh Vig, Venkataramana Runkana