Physic Informed
Physics-informed machine learning integrates physical principles and domain knowledge into machine learning models to improve accuracy, efficiency, and interpretability, particularly when data is scarce or complex systems are involved. Current research focuses on developing and applying physics-informed neural networks (PINNs), DeepONets, and other architectures to diverse problems, including solving partial differential equations, modeling physical systems (e.g., fluid dynamics, structural mechanics), and improving AI reasoning. This approach is significantly impacting various fields by enabling faster, more accurate simulations, enhanced model generalization, and the development of more robust and reliable AI systems for scientific discovery and engineering applications.
Papers
Physics-informed inference of aerial animal movements from weather radar data
Fiona Lippert, Bart Kranstauber, E. Emiel van Loon, Patrick Forré
Assemble Them All: Physics-Based Planning for Generalizable Assembly by Disassembly
Yunsheng Tian, Jie Xu, Yichen Li, Jieliang Luo, Shinjiro Sueda, Hui Li, Karl D. D. Willis, Wojciech Matusik