Point Cloud
Point clouds are collections of 3D data points representing objects or scenes, primarily used for tasks like 3D reconstruction, object recognition, and autonomous navigation. Current research focuses on improving the efficiency and robustness of point cloud processing, employing techniques like deep learning (e.g., transformers, convolutional neural networks), optimal transport, and Gaussian splatting for tasks such as registration, completion, and compression. These advancements are crucial for applications ranging from robotics and autonomous driving to medical imaging and cultural heritage preservation, enabling more accurate and efficient analysis of complex 3D data.
Papers
FinderNet: A Data Augmentation Free Canonicalization aided Loop Detection and Closure technique for Point clouds in 6-DOF separation
Sudarshan S Harithas, Gurkirat Singh, Aneesh Chavan, Sarthak Sharma, Suraj Patni, Chetan Arora, K. Madhava Krishna
Eigen-Factors an Alternating Optimization for Back-end Plane SLAM of 3D Point Clouds
Gonzalo Ferrer, Dmitrii Iarosh, Anastasiia Kornilova
Self-Ordering Point Clouds
Pengwan Yang, Cees G. M. Snoek, Yuki M. Asano
HypLiLoc: Towards Effective LiDAR Pose Regression with Hyperbolic Fusion
Sijie Wang, Qiyu Kang, Rui She, Wei Wang, Kai Zhao, Yang Song, Wee Peng Tay
Asservissement visuel 3D direct dans le domaine spectral
Maxime Adjigble, Brahim Tamadazte, Cristiana de Farias, Rustam Stolkin, Naresh Marturi
Open-Vocabulary Point-Cloud Object Detection without 3D Annotation
Yuheng Lu, Chenfeng Xu, Xiaobao Wei, Xiaodong Xie, Masayoshi Tomizuka, Kurt Keutzer, Shanghang Zhang
Small but Mighty: Enhancing 3D Point Clouds Semantic Segmentation with U-Next Framework
Ziyin Zeng, Qingyong Hu, Zhong Xie, Jian Zhou, Yongyang Xu
Maximum Covariance Unfolding Regression: A Novel Covariate-based Manifold Learning Approach for Point Cloud Data
Qian Wang, Kamran Paynabar
MLGCN: An Ultra Efficient Graph Convolution Neural Model For 3D Point Cloud Analysis
Mohammad Khodadad, Morteza Rezanejad, Ali Shiraee Kasmaee, Kaleem Siddiqi, Dirk Walther, Hamidreza Mahyar
Learning Human-to-Robot Handovers from Point Clouds
Sammy Christen, Wei Yang, Claudia Pérez-D'Arpino, Otmar Hilliges, Dieter Fox, Yu-Wei Chao
Local region-learning modules for point cloud classification
Kaya Turgut, Helin Dutagaci
Rethinking the Approximation Error in 3D Surface Fitting for Point Cloud Normal Estimation
Hang Du, Xuejun Yan, Jingjing Wang, Di Xie, Shiliang Pu
PartManip: Learning Cross-Category Generalizable Part Manipulation Policy from Point Cloud Observations
Haoran Geng, Ziming Li, Yiran Geng, Jiayi Chen, Hao Dong, He Wang
Point2Vec for Self-Supervised Representation Learning on Point Clouds
Karim Abou Zeid, Jonas Schult, Alexander Hermans, Bastian Leibe
HybridPoint: Point Cloud Registration Based on Hybrid Point Sampling and Matching
Yiheng Li, Canhui Tang, Runzhao Yao, Aixue Ye, Feng Wen, Shaoyi Du
TriVol: Point Cloud Rendering via Triple Volumes
Tao Hu, Xiaogang Xu, Ruihang Chu, Jiaya Jia
Point2Pix: Photo-Realistic Point Cloud Rendering via Neural Radiance Fields
Tao Hu, Xiaogang Xu, Shu Liu, Jiaya Jia
NerVE: Neural Volumetric Edges for Parametric Curve Extraction from Point Cloud
Xiangyu Zhu, Dong Du, Weikai Chen, Zhiyou Zhao, Yinyu Nie, Xiaoguang Han