Practical Algorithm
Practical algorithm research focuses on developing and improving algorithms for diverse applications, prioritizing efficiency, accuracy, and interpretability. Current research emphasizes areas like efficient model training and inference (e.g., low-bit quantization for LLMs, distributed algorithms for large datasets), robust optimization techniques (e.g., evolutionary algorithms, Q-learning variants), and methods for handling noisy data or dynamic environments. These advancements have significant implications across various fields, including machine learning, robotics, and data analysis, by enabling more efficient and reliable solutions to complex problems.
Papers
Subspace-Constrained Quadratic Matrix Factorization: Algorithm and Applications
Zheng Zhai, Xiaohui Li
A Generalisation of Voter Model: Influential Nodes and Convergence Properties
Abhiram Manohara, Ahad N. Zehmakan
Approximate FW Algorithm with a novel DMO method over Graph-structured Support Set
Yijian Pan, Hongjiao Qiang
Touchstone Benchmark: Are We on the Right Way for Evaluating AI Algorithms for Medical Segmentation?
Pedro R. A. S. Bassi, Wenxuan Li, Yucheng Tang, Fabian Isensee, Zifu Wang, Jieneng Chen, Yu-Cheng Chou, Yannick Kirchhoff, Maximilian Rokuss, Ziyan Huang, Jin Ye, Junjun He, Tassilo Wald, Constantin Ulrich, Michael Baumgartner, Saikat Roy, Klaus H. Maier-Hein, Paul Jaeger, Yiwen Ye, Yutong Xie, Jianpeng Zhang, Ziyang Chen, Yong Xia, Zhaohu Xing, Lei Zhu, Yousef Sadegheih, Afshin Bozorgpour, Pratibha Kumari, Reza Azad, Dorit Merhof, Pengcheng Shi, Ting Ma, Yuxin Du, Fan Bai, Tiejun Huang, Bo Zhao, Haonan Wang, Xiaomeng Li, Hanxue Gu, Haoyu Dong, Jichen Yang, Maciej A. Mazurowski, Saumya Gupta, Linshan Wu, Jiaxin Zhuang, Hao Chen, Holger Roth, Daguang Xu, Matthew B. Blaschko, Sergio Decherchi, Andrea Cavalli, Alan L. Yuille, Zongwei Zhou
ADMIRE: a locally adaptive single-image, non-uniformity correction and denoising algorithm: application to uncooled IR camera
Yohann Tendero, Jerome Gilles