Practical Algorithm
Practical algorithm research focuses on developing and improving algorithms for diverse applications, prioritizing efficiency, accuracy, and interpretability. Current research emphasizes areas like efficient model training and inference (e.g., low-bit quantization for LLMs, distributed algorithms for large datasets), robust optimization techniques (e.g., evolutionary algorithms, Q-learning variants), and methods for handling noisy data or dynamic environments. These advancements have significant implications across various fields, including machine learning, robotics, and data analysis, by enabling more efficient and reliable solutions to complex problems.
Papers
Enhanced Self-Organizing Map Solution for the Traveling Salesman Problem
Joao P. A. Dantas, Andre N. Costa, Marcos R. O. A. Maximo, Takashi Yoneyama
Prediction and compression of lattice QCD data using machine learning algorithms on quantum annealer
Boram Yoon, Chia Cheng Chang, Garrett T. Kenyon, Nga T. T. Nguyen, Ermal Rrapaj
Online MAP Inference and Learning for Nonsymmetric Determinantal Point Processes
Aravind Reddy, Ryan A. Rossi, Zhao Song, Anup Rao, Tung Mai, Nedim Lipka, Gang Wu, Eunyee Koh, Nesreen Ahmed
Evolutionary Multitask Optimization: Fundamental Research Questions, Practices, and Directions for the Future
Eneko Osaba, Javier Del Ser, Ponnuthurai N. Suganthan
Compresion y analisis de imagenes por medio de algoritmos para la ganaderia de precision
David Agudelo Tapias, Simon Marin Giraldo y Mauricio Toro Bermudez
Computing Graph Edit Distance with Algorithms on Quantum Devices
Massimiliano Incudini, Fabio Tarocco, Riccardo Mengoni, Alessandra Di Pierro, Antonio Mandarino