Practical Implementation
Practical implementation in scientific research focuses on translating theoretical concepts and algorithms into functional systems and applications. Current research emphasizes efficient model compression techniques (e.g., knowledge distillation, quantization) for resource-constrained environments like FPGAs, as well as robust and accurate implementations of established algorithms (e.g., gradient descent, PCA) for various applications, including biomedical image analysis and robotics. This work is crucial for bridging the gap between theoretical advancements and real-world impact, enabling the deployment of AI and other advanced technologies in diverse fields.
Papers
A Survey on Large Language Models from Concept to Implementation
Chen Wang, Jin Zhao, Jiaqi Gong
Implementation of the Principal Component Analysis onto High-Performance Computer Facilities for Hyperspectral Dimensionality Reduction: Results and Comparisons
E. Martel, R. Lazcano, J. Lopez, D. Madroñal, R. Salvador, S. Lopez, E. Juarez, R. Guerra, C. Sanz, R. Sarmiento