Practical Method
Practical methods in machine learning and related fields are currently focused on improving efficiency, accuracy, and generalizability of existing algorithms and models. Research emphasizes developing faster solvers for optimization problems (e.g., using parallel-in-time methods and novel optimizers like the generalized Newton's method), enhancing model robustness through techniques such as low-rank approximations and prompt portfolios, and creating more reliable uncertainty quantification methods. These advancements are crucial for deploying machine learning models in resource-constrained environments and for building more trustworthy and explainable AI systems across diverse applications.
Papers
Writing your own book: A method for going from closed to open book QA to improve robustness and performance of smaller LLMs
Giorgi Kokaia, Pratyush Sinha, Yutong Jiang, Nozha Boujemaa
A method for the ethical analysis of brain-inspired AI
Michele Farisco, Gianluca Baldassarre, Emilio Cartoni, Antonia Leach, Mihai A. Petrovici, Achim Rosemann, Arleen Salles, Bernd Stahl, Sacha J. van Albada