Pre Trained
Pre-trained models represent a cornerstone of modern machine learning, aiming to leverage the knowledge learned from massive datasets to improve efficiency and performance on downstream tasks. Current research focuses on adapting these pre-trained models to diverse modalities (e.g., vision, language, audio) and tasks, often employing transformer-based architectures and techniques like transfer learning, parameter-efficient fine-tuning, and contrastive learning. This approach significantly reduces the need for large, task-specific datasets and computational resources, accelerating progress in various fields including medical image analysis, speech recognition, and natural language processing. The resulting improvements in accuracy, efficiency, and generalizability have broad implications for both scientific discovery and practical applications.
Papers
Megalodon: Efficient LLM Pretraining and Inference with Unlimited Context Length
Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, Lili Yu, Hao Zhang, Jonathan May, Luke Zettlemoyer, Omer Levy, Chunting Zhou
Pathological Primitive Segmentation Based on Visual Foundation Model with Zero-Shot Mask Generation
Abu Bakor Hayat Arnob, Xiangxue Wang, Yiping Jiao, Xiao Gan, Wenlong Ming, Jun Xu