Predictive Model
Predictive modeling aims to build computational models that accurately forecast future outcomes based on available data. Current research emphasizes enhancing model accuracy and interpretability, particularly in data-scarce domains, by incorporating latent features (e.g., using large language models), weighting samples based on sub-cohort characteristics, and integrating domain expertise (e.g., physics-informed learning or expert knowledge encoded via LLMs). These advancements are significantly impacting diverse fields, from healthcare (e.g., disease prediction using EHRs and imaging) and environmental science (e.g., weather and solar activity forecasting) to manufacturing (e.g., fault detection) and social sciences (e.g., disinformation network mapping). The focus is on developing robust, reliable models that provide not only accurate predictions but also quantifiable uncertainty estimates.
Papers
Enhancing Manufacturing Quality Prediction Models through the Integration of Explainability Methods
Dennis Gross, Helge Spieker, Arnaud Gotlieb, Ricardo Knoblauch
First Experiences with the Identification of People at Risk for Diabetes in Argentina using Machine Learning Techniques
Enzo Rucci, Gonzalo Tittarelli, Franco Ronchetti, Jorge F. Elgart, Laura Lanzarini, Juan José Gagliardino
Statistical and Machine Learning Models for Predicting Fire and Other Emergency Events
Dilli Prasad Sharma, Nasim Beigi-Mohammadi, Hongxiang Geng, Dawn Dixon, Rob Madro, Phil Emmenegger, Carlos Tobar, Jeff Li, Alberto Leon-Garcia
Machine Learning in management of precautionary closures caused by lipophilic biotoxins
Andres Molares-Ulloa, Enrique Fernandez-Blanco, Alejandro Pazos, Daniel Rivero