Procedural Fairness
Procedural fairness in artificial intelligence focuses on ensuring that AI systems make decisions equitably across different demographic groups, mitigating biases that can lead to discriminatory outcomes. Current research emphasizes developing and evaluating fairness-aware algorithms and models, including those based on adversarial learning, data augmentation techniques like mixup, and distributionally robust optimization, across various applications like healthcare, process analytics, and recommender systems. This research is crucial for building trustworthy AI systems and addressing societal concerns about algorithmic bias, impacting both the development of ethical AI guidelines and the practical deployment of AI in sensitive domains.
Papers
High-resolution synthesis of high-density breast mammograms: Application to improved fairness in deep learning based mass detection
Lidia Garrucho, Kaisar Kushibar, Richard Osuala, Oliver Diaz, Alessandro Catanese, Javier del Riego, Maciej Bobowicz, Fredrik Strand, Laura Igual, Karim Lekadir
Towards Auditing Unsupervised Learning Algorithms and Human Processes For Fairness
Ian Davidson, S. S. Ravi
Fairness and robustness in anti-causal prediction
Maggie Makar, Alexander D'Amour