Proximal Policy Optimization
Proximal Policy Optimization (PPO) is a reinforcement learning algorithm used to train agents to make optimal decisions in complex environments, with a current research focus on improving its efficiency and robustness. Recent work explores enhancements such as refined credit assignment methods (e.g., VinePPO), incorporation of human feedback and safety mechanisms (e.g., HI-PPO, PRPO), and addressing challenges in high-dimensional spaces and sample efficiency through techniques like diffusion model integration. These advancements are significant for various applications, including robotics, autonomous systems, and large language model alignment, where PPO's ability to learn effective policies from interactions with the environment is crucial.
Papers
Benchmarking Deep Reinforcement Learning Algorithms for Vision-based Robotics
Swagat Kumar, Hayden Sampson, Ardhendu Behera
Learning Robust Policies for Generalized Debris Capture with an Automated Tether-Net System
Chen Zeng, Grant Hecht, Prajit KrisshnaKumar, Raj K. Shah, Souma Chowdhury, Eleonora M. Botta