Q Learning
Q-learning is a reinforcement learning algorithm aiming to find optimal actions in an environment by learning a Q-function that estimates the expected cumulative reward for each state-action pair. Current research focuses on improving Q-learning's robustness, efficiency, and applicability to complex scenarios, including multi-agent systems, partially observable environments (POMDPs), and those with corrupted rewards, often employing deep learning architectures like deep Q-networks (DQNs) and modifications such as double Q-learning and prioritized experience replay. These advancements are significant for addressing challenges in various fields, such as robotics, autonomous systems, and network optimization, where efficient and reliable decision-making under uncertainty is crucial.
Papers
Model-free Posterior Sampling via Learning Rate Randomization
Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Remi Munos, Alexey Naumov, Pierre Perrault, Michal Valko, Pierre Menard
Lifting the Veil: Unlocking the Power of Depth in Q-learning
Shao-Bo Lin, Tao Li, Shaojie Tang, Yao Wang, Ding-Xuan Zhou