Quantum Machine Learning
Quantum machine learning (QML) aims to leverage the unique properties of quantum computers to enhance machine learning algorithms, primarily focusing on improving speed, accuracy, and data efficiency. Current research emphasizes the development and application of quantum algorithms like variational quantum circuits (VQCs), quantum kernels, and quantum neural networks (QNNs), including variations such as quantum LSTMs and GANs, often in hybrid quantum-classical architectures. This field is significant because it explores the potential for quantum speedups in various machine learning tasks, with applications ranging from image classification and drug discovery to materials science and anomaly detection, although the extent of practical quantum advantage remains an active area of investigation. Challenges include mitigating noise in quantum hardware and understanding the generalization capabilities of QML models.
Papers
Several fitness functions and entanglement gates in quantum kernel generation
Haiyan Wang
Quantum-Inspired Machine Learning: a Survey
Larry Huynh, Jin Hong, Ajmal Mian, Hajime Suzuki, Yanqiu Wu, Seyit Camtepe
MosaiQ: Quantum Generative Adversarial Networks for Image Generation on NISQ Computers
Daniel Silver, Tirthak Patel, William Cutler, Aditya Ranjan, Harshitta Gandhi, Devesh Tiwari