Recurrent Neural Network
Recurrent Neural Networks (RNNs) are a class of neural networks designed to process sequential data by maintaining an internal state that is updated over time. Current research focuses on improving RNN efficiency and stability, exploring variations like LSTMs and GRUs, and investigating their application in diverse fields such as time series forecasting, natural language processing, and dynamical systems modeling. This includes developing novel architectures like selective state space models for improved memory efficiency and exploring the use of RNNs in conjunction with other architectures, such as transformers and convolutional neural networks. The resulting advancements have significant implications for various applications requiring sequential data processing, offering improved accuracy, efficiency, and interpretability.
Papers
Emergent Computations in Trained Artificial Neural Networks and Real Brains
Néstor Parga, Luis Serrano-Fernández, Joan Falcó-Roget
Decomposing a Recurrent Neural Network into Modules for Enabling Reusability and Replacement
Sayem Mohammad Imtiaz, Fraol Batole, Astha Singh, Rangeet Pan, Breno Dantas Cruz, Hridesh Rajan