Reinforcement Learning Algorithm
Reinforcement learning (RL) algorithms train agents to make optimal decisions by interacting with an environment and maximizing cumulative rewards. Current research emphasizes improving RL's efficiency and stability, focusing on areas like model-based methods incorporating techniques such as Monte Carlo Tree Search, the development of novel algorithms for specific applications (e.g., traffic control, robotics), and addressing challenges in high-dimensional or partially observable environments. The impact of RL spans diverse fields, from optimizing resource allocation in complex systems to developing more effective personalized interventions in healthcare and improving the efficiency of robotic control systems.
Papers
Reinforcement Learning to improve delta robot throws for sorting scrap metal
Arthur Louette, Gaspard Lambrechts, Damien Ernst, Eric Pirard, Godefroid Dislaire
Oralytics Reinforcement Learning Algorithm
Anna L. Trella, Kelly W. Zhang, Stephanie M. Carpenter, David Elashoff, Zara M. Greer, Inbal Nahum-Shani, Dennis Ruenger, Vivek Shetty, Susan A. Murphy