Reinforcement Learning Algorithm
Reinforcement learning (RL) algorithms train agents to make optimal decisions by interacting with an environment and maximizing cumulative rewards. Current research emphasizes improving RL's efficiency and stability, focusing on areas like model-based methods incorporating techniques such as Monte Carlo Tree Search, the development of novel algorithms for specific applications (e.g., traffic control, robotics), and addressing challenges in high-dimensional or partially observable environments. The impact of RL spans diverse fields, from optimizing resource allocation in complex systems to developing more effective personalized interventions in healthcare and improving the efficiency of robotic control systems.
Papers
Reinforcement Learning Based Oscillation Dampening: Scaling up Single-Agent RL algorithms to a 100 AV highway field operational test
Kathy Jang, Nathan Lichtlé, Eugene Vinitsky, Adit Shah, Matthew Bunting, Matthew Nice, Benedetto Piccoli, Benjamin Seibold, Daniel B. Work, Maria Laura Delle Monache, Jonathan Sprinkle, Jonathan W. Lee, Alexandre M. Bayen
Q-FOX Learning: Breaking Tradition in Reinforcement Learning
Mahmood A. Jumaah, Yossra H. Ali, Tarik A. Rashid
Assessing the Impact of Distribution Shift on Reinforcement Learning Performance
Ted Fujimoto, Joshua Suetterlein, Samrat Chatterjee, Auroop Ganguly
Open RL Benchmark: Comprehensive Tracked Experiments for Reinforcement Learning
Shengyi Huang, Quentin Gallouédec, Florian Felten, Antonin Raffin, Rousslan Fernand Julien Dossa, Yanxiao Zhao, Ryan Sullivan, Viktor Makoviychuk, Denys Makoviichuk, Mohamad H. Danesh, Cyril Roumégous, Jiayi Weng, Chufan Chen, Md Masudur Rahman, João G. M. Araújo, Guorui Quan, Daniel Tan, Timo Klein, Rujikorn Charakorn, Mark Towers, Yann Berthelot, Kinal Mehta, Dipam Chakraborty, Arjun KG, Valentin Charraut, Chang Ye, Zichen Liu, Lucas N. Alegre, Alexander Nikulin, Xiao Hu, Tianlin Liu, Jongwook Choi, Brent Yi