Reinforcement Learning Algorithm
Reinforcement learning (RL) algorithms train agents to make optimal decisions by interacting with an environment and maximizing cumulative rewards. Current research emphasizes improving RL's efficiency and stability, focusing on areas like model-based methods incorporating techniques such as Monte Carlo Tree Search, the development of novel algorithms for specific applications (e.g., traffic control, robotics), and addressing challenges in high-dimensional or partially observable environments. The impact of RL spans diverse fields, from optimizing resource allocation in complex systems to developing more effective personalized interventions in healthcare and improving the efficiency of robotic control systems.
Papers
Designing Reinforcement Learning Algorithms for Digital Interventions: Pre-implementation Guidelines
Anna L. Trella, Kelly W. Zhang, Inbal Nahum-Shani, Vivek Shetty, Finale Doshi-Velez, Susan A. Murphy
Sim2real for Reinforcement Learning Driven Next Generation Networks
Peizheng Li, Jonathan Thomas, Xiaoyang Wang, Hakan Erdol, Abdelrahim Ahmad, Rui Inacio, Shipra Kapoor, Arjun Parekh, Angela Doufexi, Arman Shojaeifard, Robert Piechocki