Reward Learning

Reward learning focuses on automatically inferring or shaping reward functions for reinforcement learning agents, enabling them to learn complex tasks without explicit programming. Current research emphasizes efficient reward function design using large language models, inverse reinforcement learning from human demonstrations (including suboptimal or preference-based feedback), and novel algorithms to improve sample efficiency and robustness. These advancements are crucial for deploying reinforcement learning in real-world applications, such as robotics, personalized education, and the responsible development of AI systems, by enabling more effective and human-aligned learning.

Papers