Scientific Discovery
Scientific discovery is increasingly being automated through the development of AI agents capable of performing the entire scientific workflow, from hypothesis generation to experimental design and analysis. Current research focuses on developing and evaluating these agents using benchmarks and novel algorithms, including large language models (LLMs), neural networks (e.g., recurrent convolutional neural networks, variational autoencoders), and evolutionary computation methods, often applied to specific scientific domains like materials science and biological research. This automation promises to accelerate the pace of scientific discovery across various fields by handling large datasets, complex simulations, and the synthesis of information from diverse sources, ultimately leading to more efficient and impactful research.
Papers
Tangent Space Causal Inference: Leveraging Vector Fields for Causal Discovery in Dynamical Systems
Kurt Butler, Daniel Waxman, Petar M. Djurić
MassSpecGym: A benchmark for the discovery and identification of molecules
Roman Bushuiev, Anton Bushuiev, Niek F. de Jonge, Adamo Young, Fleming Kretschmer, Raman Samusevich, Janne Heirman, Fei Wang, Luke Zhang, Kai Dührkop, Marcus Ludwig, Nils A. Haupt, Apurva Kalia, Corinna Brungs, Robin Schmid, Russell Greiner, Bo Wang, David S. Wishart, Li-Ping Liu, Juho Rousu, Wout Bittremieux, Hannes Rost, Tytus D. Mak, Soha Hassoun, Florian Huber, Justin J.J. van der Hooft, Michael A. Stravs, Sebastian Böcker, Josef Sivic, Tomáš Pluskal