Scientific Inference
Scientific inference, the process of drawing conclusions from data, is a core challenge across numerous scientific fields, with current research focusing on improving efficiency and accuracy. This involves developing novel algorithms and architectures, such as those based on Bayesian networks, diffusion transformers, and autoregressive models, to optimize inference processes in various contexts, including large language models and image processing. These advancements are crucial for accelerating scientific discovery and enabling real-world applications in areas like personalized medicine, legal tech, and industrial automation, where efficient and reliable inference is paramount. The emphasis is on addressing computational bottlenecks and improving the reliability of inferences, particularly in scenarios with limited data or complex models.
Papers
Kernel-, mean- and noise-marginalised Gaussian processes for exoplanet transits and $H_0$ inference
Namu Kroupa, David Yallup, Will Handley, Michael Hobson
Dissecting the Runtime Performance of the Training, Fine-tuning, and Inference of Large Language Models
Longteng Zhang, Xiang Liu, Zeyu Li, Xinglin Pan, Peijie Dong, Ruibo Fan, Rui Guo, Xin Wang, Qiong Luo, Shaohuai Shi, Xiaowen Chu