Scientific Inference
Scientific inference, the process of drawing conclusions from data, is a core challenge across numerous scientific fields, with current research focusing on improving efficiency and accuracy. This involves developing novel algorithms and architectures, such as those based on Bayesian networks, diffusion transformers, and autoregressive models, to optimize inference processes in various contexts, including large language models and image processing. These advancements are crucial for accelerating scientific discovery and enabling real-world applications in areas like personalized medicine, legal tech, and industrial automation, where efficient and reliable inference is paramount. The emphasis is on addressing computational bottlenecks and improving the reliability of inferences, particularly in scenarios with limited data or complex models.
Papers
LtU-ILI: An All-in-One Framework for Implicit Inference in Astrophysics and Cosmology
Matthew Ho, Deaglan J. Bartlett, Nicolas Chartier, Carolina Cuesta-Lazaro, Simon Ding, Axel Lapel, Pablo Lemos, Christopher C. Lovell, T. Lucas Makinen, Chirag Modi, Viraj Pandya, Shivam Pandey, Lucia A. Perez, Benjamin Wandelt, Greg L. Bryan
Are Machines Better at Complex Reasoning? Unveiling Human-Machine Inference Gaps in Entailment Verification
Soumya Sanyal, Tianyi Xiao, Jiacheng Liu, Wenya Wang, Xiang Ren