Segmentation Performance
Segmentation performance, the accuracy of delineating objects or regions within images, is a critical area of research across diverse fields, aiming to improve the precision and efficiency of automated image analysis. Current research focuses on enhancing existing architectures like U-Net and incorporating transformers, large language models, and foundation models like SAM to improve segmentation accuracy, particularly in challenging domains such as medical imaging and microscopy. These advancements are crucial for improving diagnostic accuracy in healthcare, accelerating scientific discovery in various biological fields, and enabling more robust automation in numerous applications. Significant effort is also being devoted to addressing challenges like noisy labels, domain adaptation, and computational efficiency.
Papers
Exploring Event-driven Dynamic Context for Accident Scene Segmentation
Jiaming Zhang, Kailun Yang, Rainer Stiefelhagen
CA-SSL: Class-Agnostic Semi-Supervised Learning for Detection and Segmentation
Lu Qi, Jason Kuen, Zhe Lin, Jiuxiang Gu, Fengyun Rao, Dian Li, Weidong Guo, Zhen Wen, Ming-Hsuan Yang, Jiaya Jia
Diversified Multi-prototype Representation for Semi-supervised Segmentation
Jizong Peng, Christian Desrosiers, Marco Pedersoli
FedCostWAvg: A new averaging for better Federated Learning
Leon Mächler, Ivan Ezhov, Florian Kofler, Suprosanna Shit, Johannes C. Paetzold, Timo Loehr, Benedikt Wiestler, Bjoern Menze