Semantic Segmentation
Semantic segmentation, the task of assigning a semantic label to each pixel in an image, aims to achieve precise pixel-level scene understanding. Current research emphasizes improving accuracy and efficiency across diverse data modalities (RGB, depth, lidar, hyperspectral, and time series) and challenging conditions (low light, adverse weather, imbalanced datasets), often employing advanced architectures like transformers and diffusion models alongside innovative loss functions and training strategies. This field is crucial for numerous applications, including autonomous driving, medical image analysis, remote sensing, and robotics, driving advancements in both model robustness and interpretability.
Papers
SAM-Path: A Segment Anything Model for Semantic Segmentation in Digital Pathology
Jingwei Zhang, Ke Ma, Saarthak Kapse, Joel Saltz, Maria Vakalopoulou, Prateek Prasanna, Dimitris Samaras
Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution
Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde Caron, Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim Alabdulmohsin, Avital Oliver, Piotr Padlewski, Alexey Gritsenko, Mario Lučić, Neil Houlsby
OG: Equip vision occupancy with instance segmentation and visual grounding
Zichao Dong, Hang Ji, Weikun Zhang, Xufeng Huang, Junbo Chen
Enhancing Building Semantic Segmentation Accuracy with Super Resolution and Deep Learning: Investigating the Impact of Spatial Resolution on Various Datasets
Zhiling Guo, Xiaodan Shi, Haoran Zhang, Dou Huang, Xiaoya Song, Jinyue Yan, Ryosuke Shibasaki
CMDFusion: Bidirectional Fusion Network with Cross-modality Knowledge Distillation for LIDAR Semantic Segmentation
Jun Cen, Shiwei Zhang, Yixuan Pei, Kun Li, Hang Zheng, Maochun Luo, Yingya Zhang, Qifeng Chen
Transfer Learning of Semantic Segmentation Methods for Identifying Buried Archaeological Structures on LiDAR Data
Gregory Sech, Paolo Soleni, Wouter B. Verschoof-van der Vaart, Žiga Kokalj, Arianna Traviglia, Marco Fiorucci
A Deep Active Contour Model for Delineating Glacier Calving Fronts
Konrad Heidler, Lichao Mou, Erik Loebel, Mirko Scheinert, Sébastien Lefèvre, Xiao Xiang Zhu
General-Purpose Multimodal Transformer meets Remote Sensing Semantic Segmentation
Nhi Kieu, Kien Nguyen, Sridha Sridharan, Clinton Fookes
Spherical Feature Pyramid Networks For Semantic Segmentation
Thomas Walker, Varun Anand, Pavlos Andreadis
Prompting Diffusion Representations for Cross-Domain Semantic Segmentation
Rui Gong, Martin Danelljan, Han Sun, Julio Delgado Mangas, Luc Van Gool
Multi-Modal Prototypes for Open-Set Semantic Segmentation
Yuhuan Yang, Chaofan Ma, Chen Ju, Ya Zhang, Yanfeng Wang
The KiTS21 Challenge: Automatic segmentation of kidneys, renal tumors, and renal cysts in corticomedullary-phase CT
Nicholas Heller, Fabian Isensee, Dasha Trofimova, Resha Tejpaul, Zhongchen Zhao, Huai Chen, Lisheng Wang, Alex Golts, Daniel Khapun, Daniel Shats, Yoel Shoshan, Flora Gilboa-Solomon, Yasmeen George, Xi Yang, Jianpeng Zhang, Jing Zhang, Yong Xia, Mengran Wu, Zhiyang Liu, Ed Walczak, Sean McSweeney, Ranveer Vasdev, Chris Hornung, Rafat Solaiman, Jamee Schoephoerster, Bailey Abernathy, David Wu, Safa Abdulkadir, Ben Byun, Justice Spriggs, Griffin Struyk, Alexandra Austin, Ben Simpson, Michael Hagstrom, Sierra Virnig, John French, Nitin Venkatesh, Sarah Chan, Keenan Moore, Anna Jacobsen, Susan Austin, Mark Austin, Subodh Regmi, Nikolaos Papanikolopoulos, Christopher Weight