Semi Supervised Learning
Semi-supervised learning (SSL) aims to improve machine learning model accuracy by leveraging both limited labeled and abundant unlabeled data. Current research focuses on refining pseudo-labeling techniques to reduce noise and bias in unlabeled data, employing teacher-student models and contrastive learning, and developing novel algorithms to effectively utilize all available unlabeled samples, including those from open sets or with imbalanced class distributions. These advancements are significant because they reduce the reliance on expensive and time-consuming manual labeling, thereby expanding the applicability of machine learning to diverse domains with limited annotated data.
Papers
A Masked Semi-Supervised Learning Approach for Otago Micro Labels Recognition
Meng Shang, Lenore Dedeyne, Jolan Dupont, Laura Vercauteren, Nadjia Amini, Laurence Lapauw, Evelien Gielen, Sabine Verschueren, Carolina Varon, Walter De Raedt, Bart Vanrumste
SEGAN: semi-supervised learning approach for missing data imputation
Xiaohua Pan, Weifeng Wu, Peiran Liu, Zhen Li, Peng Lu, Peijian Cao, Jianfeng Zhang, Xianfei Qiu, YangYang Wu
Making Better Use of Unlabelled Data in Bayesian Active Learning
Freddie Bickford Smith, Adam Foster, Tom Rainforth
Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification
Yanbiao Ma, Licheng Jiao, Fang Liu, Lingling Li, Shuyuan Yang, Xu Liu
MER 2024: Semi-Supervised Learning, Noise Robustness, and Open-Vocabulary Multimodal Emotion Recognition
Zheng Lian, Haiyang Sun, Licai Sun, Zhuofan Wen, Siyuan Zhang, Shun Chen, Hao Gu, Jinming Zhao, Ziyang Ma, Xie Chen, Jiangyan Yi, Rui Liu, Kele Xu, Bin Liu, Erik Cambria, Guoying Zhao, Björn W. Schuller, Jianhua Tao