Sentiment Analysis
Sentiment analysis aims to automatically determine the emotional tone expressed in text, aiming to understand opinions and attitudes. Current research heavily focuses on leveraging large language models (LLMs) like BERT and its variants, along with other architectures such as graph neural networks, to improve accuracy and efficiency, particularly in multimodal settings and low-resource languages. This field is crucial for various applications, including market research, social media monitoring, and understanding public opinion, driving advancements in natural language processing and impacting decision-making across numerous sectors.
Papers
A Deep Learning Approach to Integrate Human-Level Understanding in a Chatbot
Afia Fairoose Abedin, Amirul Islam Al Mamun, Rownak Jahan Nowrin, Amitabha Chakrabarty, Moin Mostakim, Sudip Kumar Naskar
Domain Adaptation with Category Attention Network for Deep Sentiment Analysis
Dongbo Xi, Fuzhen Zhuang, Ganbin Zhou, Xiaohu Cheng, Fen Lin, Qing He