Social Medium
Social media analysis focuses on understanding and leveraging the vast amount of textual and multimedia data generated on online platforms to address societal challenges and scientific questions. Current research heavily utilizes large language models (LLMs) and transformer-based architectures, coupled with graph neural networks and other machine learning techniques, to detect harmful content (e.g., hate speech, suicide ideation, misinformation), analyze user behavior and sentiment, and predict societal trends. This field is significant for its potential to improve mental health interventions, mitigate the spread of harmful information, and enhance our understanding of social dynamics, impacting both the social sciences and the development of more responsible and ethical online platforms.
Papers
Pearl: Personalizing Large Language Model Writing Assistants with Generation-Calibrated Retrievers
Sheshera Mysore, Zhuoran Lu, Mengting Wan, Longqi Yang, Bahareh Sarrafzadeh, Steve Menezes, Tina Baghaee, Emmanuel Barajas Gonzalez, Jennifer Neville, Tara Safavi
"We Demand Justice!": Towards Social Context Grounding of Political Texts
Rajkumar Pujari, Chengfei Wu, Dan Goldwasser
Identifying Self-Disclosures of Use, Misuse and Addiction in Community-based Social Media Posts
Chenghao Yang, Tuhin Chakrabarty, Karli R Hochstatter, Melissa N Slavin, Nabila El-Bassel, Smaranda Muresan