Solution Path
Solution path research encompasses diverse fields, focusing on finding optimal or effective solutions across various problem domains, from computer vision and natural language processing to robotics and differential equations. Current research emphasizes developing robust and efficient algorithms, including transformer-based models and physics-informed neural networks, to address challenges like data heterogeneity, occlusion, and model interpretability. These advancements are crucial for improving the accuracy, reliability, and explainability of solutions in numerous applications, ranging from autonomous driving and medical diagnosis to material science and environmental monitoring.
Papers
Winning solutions and post-challenge analyses of the ChaLearn AutoDL challenge 2019
Zhengying Liu, Adrien Pavao, Zhen Xu, Sergio Escalera, Fabio Ferreira, Isabelle Guyon, Sirui Hong, Frank Hutter, Rongrong Ji, Julio C. S. Jacques Junior, Ge Li, Marius Lindauer, Zhipeng Luo, Meysam Madadi, Thomas Nierhoff, Kangning Niu, Chunguang Pan, Danny Stoll, Sebastien Treguer, Jin Wang, Peng Wang, Chenglin Wu, Youcheng Xiong, Arbe r Zela, Yang Zhang
Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task
Himashi Peiris, Zhaolin Chen, Gary Egan, Mehrtash Harandi