Speech Quality
Speech quality assessment aims to objectively and subjectively measure the clarity and pleasantness of speech signals, crucial for applications ranging from telecommunications to clinical voice analysis. Current research focuses on developing accurate and efficient automatic speech quality assessment models, often employing deep neural networks like Convolutional Neural Networks (CNNs), Conformers, and large language models (LLMs), alongside techniques like self-supervised learning and quantization to reduce computational demands for real-time applications. These advancements are significant for improving the user experience in various technologies and for enabling more objective clinical evaluations of voice disorders.
Papers
Towards Environmental Preference Based Speech Enhancement For Individualised Multi-Modal Hearing Aids
Jasper Kirton-Wingate, Shafique Ahmed, Adeel Hussain, Mandar Gogate, Kia Dashtipour, Jen-Cheng Hou, Tassadaq Hussain, Yu Tsao, Amir Hussain
Self-Supervised Speech Quality Estimation and Enhancement Using Only Clean Speech
Szu-Wei Fu, Kuo-Hsuan Hung, Yu Tsao, Yu-Chiang Frank Wang