Strong Consistency
Strong consistency, in the context of machine learning models, refers to the ability of a model to produce similar or identical outputs for semantically similar inputs, a crucial aspect for robustness and trustworthiness. Current research focuses on improving consistency in various model types, including large language models (LLMs), vision-language models (VLMs), and neural networks applied to diverse tasks like image generation, change detection, and robot control. Addressing inconsistencies through techniques like adapter modules, consistency regularization, and knowledge distillation is vital for building reliable AI systems and improving the validity of research findings across numerous scientific domains and practical applications.
Papers
ViTally Consistent: Scaling Biological Representation Learning for Cell Microscopy
Kian Kenyon-Dean, Zitong Jerry Wang, John Urbanik, Konstantin Donhauser, Jason Hartford, Saber Saberian, Nil Sahin, Ihab Bendidi, Safiye Celik, Marta Fay, Juan Sebastian Rodriguez Vera, Imran S Haque, Oren Kraus
OwMatch: Conditional Self-Labeling with Consistency for Open-World Semi-Supervised Learning
Shengjie Niu, Lifan Lin, Jian Huang, Chao Wang