Strong Generalization
Strong generalization, the ability of machine learning models to perform well on unseen data, is a central objective in current research. Active areas of investigation include improving the robustness of self-supervised learning, understanding the optimization dynamics of transformers and other architectures (including CNNs and RNNs), and developing methods to enhance generalization through data augmentation, regularization techniques (e.g., logical regularization, consistency regularization), and improved training strategies (e.g., few-shot learning, meta-learning). These advancements are crucial for building reliable and adaptable AI systems across diverse applications, from image classification and natural language processing to healthcare and robotics.
Papers
Explaining grokking through circuit efficiency
Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, Ramana Kumar
RoboAgent: Generalization and Efficiency in Robot Manipulation via Semantic Augmentations and Action Chunking
Homanga Bharadhwaj, Jay Vakil, Mohit Sharma, Abhinav Gupta, Shubham Tulsiani, Vikash Kumar
ABA Learning via ASP
Emanuele De Angelis, Maurizio Proietti, Francesca Toni
Domain Generalization without Excess Empirical Risk
Ozan Sener, Vladlen Koltun
Benchmarking Robustness and Generalization in Multi-Agent Systems: A Case Study on Neural MMO
Yangkun Chen, Joseph Suarez, Junjie Zhang, Chenghui Yu, Bo Wu, Hanmo Chen, Hengman Zhu, Rui Du, Shanliang Qian, Shuai Liu, Weijun Hong, Jinke He, Yibing Zhang, Liang Zhao, Clare Zhu, Julian Togelius, Sharada Mohanty, Jiaxin Chen, Xiu Li, Xiaolong Zhu, Phillip Isola
Classifying Dementia in the Presence of Depression: A Cross-Corpus Study
Franziska Braun, Sebastian P. Bayerl, Paula A. Pérez-Toro, Florian Hönig, Hartmut Lehfeld, Thomas Hillemacher, Elmar Nöth, Tobias Bocklet, Korbinian Riedhammer
It Ain't That Bad: Understanding the Mysterious Performance Drop in OOD Generalization for Generative Transformer Models
Xingcheng Xu, Zihao Pan, Haipeng Zhang, Yanqing Yang