Stronger Generalizability
Stronger generalizability in machine learning models is a crucial research area aiming to improve the ability of models trained on one dataset to perform well on unseen data or tasks. Current efforts focus on developing robust methodologies for model evaluation, exploring architectures like Graph Neural Networks and transformers, and investigating techniques such as prompt engineering, data augmentation, and ensemble methods to enhance model performance across diverse scenarios. This pursuit is vital for building reliable and trustworthy AI systems applicable across various domains, from healthcare and drug discovery to robotics and environmental monitoring, ultimately increasing the impact and practical utility of machine learning.
Papers
Assessing generalisability of deep learning-based polyp detection and segmentation methods through a computer vision challenge
Sharib Ali, Noha Ghatwary, Debesh Jha, Ece Isik-Polat, Gorkem Polat, Chen Yang, Wuyang Li, Adrian Galdran, Miguel-Ángel González Ballester, Vajira Thambawita, Steven Hicks, Sahadev Poudel, Sang-Woong Lee, Ziyi Jin, Tianyuan Gan, ChengHui Yu, JiangPeng Yan, Doyeob Yeo, Hyunseok Lee, Nikhil Kumar Tomar, Mahmood Haithmi, Amr Ahmed, Michael A. Riegler, Christian Daul, Pål Halvorsen, Jens Rittscher, Osama E. Salem, Dominique Lamarque, Renato Cannizzaro, Stefano Realdon, Thomas de Lange, James E. East
Validating an SVM-based neonatal seizure detection algorithm for generalizability, non-inferiority and clinical efficacy
Karoliina T. Tapani, Päivi Nevalainen, Sampsa Vanhatalo, Nathan J. Stevenson