Structured Representation

Structured representation learning aims to create data representations that explicitly capture underlying relationships and compositional structures, improving generalization and efficiency in machine learning. Current research focuses on developing methods that disentangle factors of variation, learn object-centric representations, and integrate structured knowledge from sources like scene graphs and knowledge bases, often employing transformer networks, Koopman autoencoders, and various attention mechanisms. These advancements are significant because they enable more robust, interpretable, and data-efficient models with applications ranging from image generation and super-resolution to question answering and robotic control.

Papers