Supervised Autoencoder
Supervised autoencoders are neural networks trained to reconstruct input data (e.g., images, time series, 3D models) via a compressed latent representation, often used for dimensionality reduction, feature extraction, and anomaly detection. Current research emphasizes developing novel architectures like Kolmogorov-Arnold Networks and hierarchical autoencoders, and integrating autoencoders with other techniques such as diffusion models and contrastive learning to improve reconstruction quality and downstream task performance. This approach finds applications across diverse fields, from improving network throughput in autonomous vehicles to enhancing image generation and analysis in astronomy and medical imaging, demonstrating the broad utility of supervised autoencoders in data processing and analysis.
Papers
The Persian Rug: solving toy models of superposition using large-scale symmetries
Aditya Cowsik, Kfir Dolev, Alex Infanger
Beyond Labels: A Self-Supervised Framework with Masked Autoencoders and Random Cropping for Breast Cancer Subtype Classification
Annalisa Chiocchetti, Marco Dossena, Christopher Irwin, Luigi Portinale
Analyzing (In)Abilities of SAEs via Formal Languages
Abhinav Menon, Manish Shrivastava, David Krueger, Ekdeep Singh Lubana
Can sparse autoencoders make sense of latent representations?
Viktoria Schuster
HART: Efficient Visual Generation with Hybrid Autoregressive Transformer
Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang, Han Cai, Yao Lu, Song Han
Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models
Junyu Chen, Han Cai, Junsong Chen, Enze Xie, Shang Yang, Haotian Tang, Muyang Li, Yao Lu, Song Han
Detecting Unforeseen Data Properties with Diffusion Autoencoder Embeddings using Spine MRI data
Robert Graf, Florian Hunecke, Soeren Pohl, Matan Atad, Hendrik Moeller, Sophie Starck, Thomas Kroencke, Stefanie Bette, Fabian Bamberg, Tobias Pischon, Thoralf Niendorf, Carsten Schmidt, Johannes C. Paetzold, Daniel Rueckert, Jan S Kirschke
Block-to-Scene Pre-training for Point Cloud Hybrid-Domain Masked Autoencoders
Yaohua Zha, Tao Dai, Yanzi Wang, Hang Guo, Taolin Zhang, Zhihao Ouyang, Chunlin Fan, Bin Chen, Ke Chen, Shu-Tao Xia
Learning Robust Representations for Communications over Interference-limited Channels
Shubham Paul, Sudharsan Senthil, Preethi Seshadri, Nambi Seshadri, R David Koilpillai
Enhanced Federated Anomaly Detection Through Autoencoders Using Summary Statistics-Based Thresholding
Sofiane Laridi, Gregory Palmer, Kam-Ming Mark Tam
Transforming In-Vehicle Network Intrusion Detection: VAE-based Knowledge Distillation Meets Explainable AI
Muhammet Anil Yagiz, Pedram MohajerAnsari, Mert D. Pese, Polat Goktas