Surrogate Model
Surrogate models are computationally efficient approximations of complex simulations, primarily used to accelerate optimization, uncertainty quantification, and design exploration in various scientific and engineering fields. Current research emphasizes developing accurate and robust surrogate models using diverse machine learning architectures, including neural networks (e.g., convolutional, recurrent, and graph convolutional networks), Gaussian processes, and normalizing flows, often incorporating techniques like Bayesian optimization and active learning to improve efficiency. The widespread adoption of surrogate models significantly reduces computational costs associated with high-fidelity simulations, enabling faster design iterations, more comprehensive uncertainty analyses, and ultimately, more efficient scientific discovery and technological advancement.
Papers
Conditional deep generative models as surrogates for spatial field solution reconstruction with quantified uncertainty in Structural Health Monitoring applications
Nicholas E. Silionis, Theodora Liangou, Konstantinos N. Anyfantis
Using Artificial Intelligence to aid Scientific Discovery of Climate Tipping Points
Jennifer Sleeman, David Chung, Chace Ashcraft, Jay Brett, Anand Gnanadesikan, Yannis Kevrekidis, Marisa Hughes, Thomas Haine, Marie-Aude Pradal, Renske Gelderloos, Caroline Tang, Anshu Saksena, Larry White