Synthetic Aperture Radar
Synthetic Aperture Radar (SAR) uses radio waves to create high-resolution images, regardless of weather or lighting conditions, making it invaluable for remote sensing and various applications. Current research focuses on improving SAR image quality through advanced speckle filtering techniques (often employing deep learning models like convolutional neural networks and diffusion models), enhancing target recognition (using architectures such as Vision Transformers and Sparse R-CNN) by mitigating clutter and improving domain generalization between synthetic and real data, and developing more efficient and robust algorithms for object detection and image segmentation. These advancements are significantly impacting fields like environmental monitoring, disaster response, and military reconnaissance by enabling more accurate and reliable interpretation of SAR imagery.
Papers
Data-Driven Uncertainty-Aware Forecasting of Sea Ice Conditions in the Gulf of Ob Based on Satellite Radar Imagery
Stefan Maria Ailuro, Anna Nedorubova, Timofey Grigoryev, Evgeny Burnaev, Vladimir Vanovskiy
NeRF-enabled Analysis-Through-Synthesis for ISAR Imaging of Small Everyday Objects with Sparse and Noisy UWB Radar Data
Md Farhan Tasnim Oshim, Albert Reed, Suren Jayasuriya, Tauhidur Rahman