Synthetic Aperture Radar
Synthetic Aperture Radar (SAR) uses radio waves to create high-resolution images, regardless of weather or lighting conditions, making it invaluable for remote sensing and various applications. Current research focuses on improving SAR image quality through advanced speckle filtering techniques (often employing deep learning models like convolutional neural networks and diffusion models), enhancing target recognition (using architectures such as Vision Transformers and Sparse R-CNN) by mitigating clutter and improving domain generalization between synthetic and real data, and developing more efficient and robust algorithms for object detection and image segmentation. These advancements are significantly impacting fields like environmental monitoring, disaster response, and military reconnaissance by enabling more accurate and reliable interpretation of SAR imagery.
Papers
SARatrX: Towards Building A Foundation Model for SAR Target Recognition
Weijie Li, Wei Yang, Yuenan Hou, Li Liu, Yongxiang Liu, Xiang Li
Training Deep Learning Models with Hybrid Datasets for Robust Automatic Target Detection on real SAR images
Benjamin Camus, Théo Voillemin, Corentin Le Barbu, Jean-Christophe Louvigné, Carole Belloni, Emmanuel Vallée