Synthetic Data
Synthetic data generation aims to create artificial datasets that mimic the statistical properties of real-world data, addressing limitations like data scarcity, privacy concerns, and high annotation costs. Current research focuses on developing sophisticated generative models, including generative adversarial networks (GANs), energy-based models (EBMs), diffusion models, and masked language models, tailored to various data types (images, text, tabular data, audio). This rapidly evolving field significantly impacts diverse scientific domains and practical applications by enabling the training of robust machine learning models in situations where real data is insufficient or ethically problematic, ultimately improving model performance and expanding research possibilities.
Papers
FuseGen: PLM Fusion for Data-generation based Zero-shot Learning
Tianyuan Zou, Yang Liu, Peng Li, Jianqing Zhang, Jingjing Liu, Ya-Qin Zhang
Deep Temporal Deaggregation: Large-Scale Spatio-Temporal Generative Models
David Bergström, Mattias Tiger, Fredrik Heintz
Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models
Jie Chen, Yupeng Zhang, Bingning Wang, Wayne Xin Zhao, Ji-Rong Wen, Weipeng Chen
ChaosMining: A Benchmark to Evaluate Post-Hoc Local Attribution Methods in Low SNR Environments
Ge Shi, Ziwen Kan, Jason Smucny, Ian Davidson
Uncertainty modeling for fine-tuned implicit functions
Anna Susmelj, Mael Macuglia, Nataša Tagasovska, Reto Sutter, Sebastiano Caprara, Jean-Philippe Thiran, Ender Konukoglu
Nemotron-4 340B Technical Report
Nvidia, :, Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H. Anh, Pallab Bhattacharya, Annika Brundyn, Jared Casper, Bryan Catanzaro, Sharon Clay, Jonathan Cohen, Sirshak Das, Ayush Dattagupta, Olivier Delalleau, Leon Derczynski, Yi Dong, Daniel Egert, Ellie Evans, Aleksander Ficek, Denys Fridman, Shaona Ghosh, Boris Ginsburg, Igor Gitman, Tomasz Grzegorzek, Robert Hero, Jining Huang, Vibhu Jawa, Joseph Jennings, Aastha Jhunjhunwala, John Kamalu, Sadaf Khan, Oleksii Kuchaiev, Patrick LeGresley, Hui Li, Jiwei Liu, Zihan Liu, Eileen Long, Ameya Sunil Mahabaleshwarkar, Somshubra Majumdar, James Maki, Miguel Martinez, Maer Rodrigues de Melo, Ivan Moshkov, Deepak Narayanan, Sean Narenthiran, Jesus Navarro, Phong Nguyen, Osvald Nitski, Vahid Noroozi, Guruprasad Nutheti, Christopher Parisien, Jupinder Parmar, Mostofa Patwary, Krzysztof Pawelec, Wei Ping, Shrimai Prabhumoye, Rajarshi Roy, Trisha Saar, Vasanth Rao Naik Sabavat, Sanjeev Satheesh, Jane Polak Scowcroft, Jason Sewall, Pavel Shamis, Gerald Shen, Mohammad Shoeybi, Dave Sizer, Misha Smelyanskiy, Felipe Soares, Makesh Narsimhan Sreedhar, Dan Su, Sandeep Subramanian, Shengyang Sun, Shubham Toshniwal, Hao Wang, Zhilin Wang, Jiaxuan You, Jiaqi Zeng, Jimmy Zhang, Jing Zhang, Vivienne Zhang, Yian Zhang, Chen Zhu
Scorecards for Synthetic Medical Data Evaluation and Reporting
Ghada Zamzmi, Adarsh Subbaswamy, Elena Sizikova, Edward Margerrison, Jana Delfino, Aldo Badano
SyntheT2C: Generating Synthetic Data for Fine-Tuning Large Language Models on the Text2Cypher Task
Ziije Zhong, Linqing Zhong, Zhaoze Sun, Qingyun Jin, Zengchang Qin, Xiaofan Zhang
MALLM-GAN: Multi-Agent Large Language Model as Generative Adversarial Network for Synthesizing Tabular Data
Yaobin Ling, Xiaoqian Jiang, Yejin Kim
Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences
Damien Ferbach, Quentin Bertrand, Avishek Joey Bose, Gauthier Gidel
Enhancing Activity Recognition After Stroke: Generative Adversarial Networks for Kinematic Data Augmentation
Aaron J. Hadley, Christopher L. Pulliam
The Unmet Promise of Synthetic Training Images: Using Retrieved Real Images Performs Better
Scott Geng, Cheng-Yu Hsieh, Vivek Ramanujan, Matthew Wallingford, Chun-Liang Li, Pang Wei Koh, Ranjay Krishna
3D-GRAND: A Million-Scale Dataset for 3D-LLMs with Better Grounding and Less Hallucination
Jianing Yang, Xuweiyi Chen, Nikhil Madaan, Madhavan Iyengar, Shengyi Qian, David F. Fouhey, Joyce Chai
Enhancing Indoor Temperature Forecasting through Synthetic Data in Low-Data Environments
Zachari Thiry, Massimiliano Ruocco, Alessandro Nocente, Michail Spitieris