Tabular Data
Tabular data, ubiquitous in various fields, presents unique challenges for machine learning due to its structured nature and mixed data types. Current research focuses on improving model performance through techniques like self-supervised learning (e.g., JEPA), generative models (e.g., GANs, VAEs, diffusion models) for data augmentation and synthesis, and the integration of large language models (LLMs) for enhanced feature extraction and data generation. These advancements aim to address limitations in existing methods, such as gradient boosted decision trees, and improve accuracy, efficiency, and robustness in applications ranging from medical diagnosis to anomaly detection and scientific simulations.
Papers
PixT3: Pixel-based Table-To-Text Generation
Iñigo Alonso, Eneko Agirre, Mirella Lapata
DocMath-Eval: Evaluating Numerical Reasoning Capabilities of LLMs in Understanding Long Documents with Tabular Data
Yilun Zhao, Yitao Long, Hongjun Liu, Linyong Nan, Lyuhao Chen, Ryo Kamoi, Yixin Liu, Xiangru Tang, Rui Zhang, Arman Cohan