Task Planning
Task planning in artificial intelligence focuses on enabling agents, both virtual and robotic, to autonomously generate sequences of actions to achieve specified goals. Current research emphasizes improving the robustness and efficiency of planning methods, particularly using large language models (LLMs) and visual language models (VLMs), often integrated with symbolic planning techniques or reinforcement learning, to handle complex, long-horizon tasks and multi-agent scenarios. This field is crucial for advancing embodied AI, improving decision-making in various domains (e.g., disaster response, robotics, game design), and developing more reliable and adaptable autonomous systems.
Papers
TravelPlanner: A Benchmark for Real-World Planning with Language Agents
Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, Yu Su
LLMs Can't Plan, But Can Help Planning in LLM-Modulo Frameworks
Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant Bhambri, Lucas Saldyt, Anil Murthy
Planning and Rendering: Towards Product Poster Generation with Diffusion Models
Zhaochen Li, Fengheng Li, Wei Feng, Honghe Zhu, Yaoyu Li, Zheng Zhang, Jingjing Lv, Junjie Shen, Zhangang Lin, Jingping Shao, Zhenglu Yang
FAPP: Fast and Adaptive Perception and Planning for UAVs in Dynamic Cluttered Environments
Minghao Lu, Xiyu Fan, Han Chen, Peng Lu