Technical Challenge
Research into technical challenges across diverse AI applications reveals a common thread: improving model robustness, fairness, and explainability while addressing limitations in data availability and computational efficiency. Current efforts focus on developing and adapting model architectures (e.g., LLMs, YOLO variants, diffusion models) for specific tasks, refining evaluation metrics, and designing robust training and deployment strategies (e.g., federated learning). These advancements are crucial for ensuring the responsible and effective deployment of AI in various sectors, from healthcare and finance to manufacturing and environmental monitoring.
Papers
Challenges, Methods, Data -- a Survey of Machine Learning in Water Distribution Networks
Valerie Vaquet, Fabian Hinder, André Artelt, Inaam Ashraf, Janine Strotherm, Jonas Vaquet, Johannes Brinkrolf, Barbara Hammer
Towards Edge General Intelligence via Large Language Models: Opportunities and Challenges
Handi Chen, Weipeng Deng, Shuo Yang, Jinfeng Xu, Zhihan Jiang, Edith C.H. Ngai, Jiangchuan Liu, Xue Liu
Automatic Screening for Children with Speech Disorder using Automatic Speech Recognition: Opportunities and Challenges
Dancheng Liu, Jason Yang, Ishan Albrecht-Buehler, Helen Qin, Sophie Li, Yuting Hu, Amir Nassereldine, Jinjun Xiong
Data Publishing in Mechanics and Dynamics: Challenges, Guidelines, and Examples from Engineering Design
Henrik Ebel, Jan van Delden, Timo Lüddecke, Aditya Borse, Rutwik Gulakala, Marcus Stoffel, Manish Yadav, Merten Stender, Leon Schindler, Kristin Miriam de Payrebrune, Maximilian Raff, C. David Remy, Benedict Röder, Peter Eberhard
A Survey on Group Fairness in Federated Learning: Challenges, Taxonomy of Solutions and Directions for Future Research
Teresa Salazar, Helder Araújo, Alberto Cano, Pedro Henriques Abreu
Multi-Dialect Vietnamese: Task, Dataset, Baseline Models and Challenges
Nguyen Van Dinh, Thanh Chi Dang, Luan Thanh Nguyen, Kiet Van Nguyen
Factory Operators' Perspectives on Cognitive Assistants for Knowledge Sharing: Challenges, Risks, and Impact on Work
Samuel Kernan Freire, Tianhao He, Chaofan Wang, Evangelos Niforatos, Alessandro Bozzon
Mitigating Backdoor Threats to Large Language Models: Advancement and Challenges
Qin Liu, Wenjie Mo, Terry Tong, Jiashu Xu, Fei Wang, Chaowei Xiao, Muhao Chen
Challenges of Generating Structurally Diverse Graphs
Fedor Velikonivtsev, Mikhail Mironov, Liudmila Prokhorenkova
Evaluation of OpenAI o1: Opportunities and Challenges of AGI
Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong Zhang, Yifan Zhou, Shizhe Liang, Zihao Wu, Yanjun Lyu, Peng Shu, Xiaowei Yu, Chao Cao, Hanqi Jiang, Hanxu Chen, Yiwei Li, Junhao Chen, Huawen Hu, Yihen Liu, Huaqin Zhao, Shaochen Xu, Haixing Dai, Lin Zhao, Ruidong Zhang, Wei Zhao, Zhenyuan Yang, Jingyuan Chen, Peilong Wang, Wei Ruan, Hui Wang, Huan Zhao, Jing Zhang, Yiming Ren, Shihuan Qin, Tong Chen, Jiaxi Li, Arif Hassan Zidan, Afrar Jahin, Minheng Chen, Sichen Xia, Jason Holmes, Yan Zhuang, Jiaqi Wang, Bochen Xu, Weiran Xia, Jichao Yu, Kaibo Tang, Yaxuan Yang, Bolun Sun, Tao Yang, Guoyu Lu, Xianqiao Wang, Lilong Chai, He Li, Jin Lu, Lichao Sun, Xin Zhang, Bao Ge, Xintao Hu, Lian Zhang, Hua Zhou, Lu Zhang, Shu Zhang, Ninghao Liu, Bei Jiang, Linglong Kong, Zhen Xiang, Yudan Ren, Jun Liu, Xi Jiang, Yu Bao, Wei Zhang, Xiang Li, Gang Li, Wei Liu, Dinggang Shen, Andrea Sikora, Xiaoming Zhai, Dajiang Zhu, Tianming Liu
Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI
Ambrish Rawat, Stefan Schoepf, Giulio Zizzo, Giandomenico Cornacchia, Muhammad Zaid Hameed, Kieran Fraser, Erik Miehling, Beat Buesser, Elizabeth M. Daly, Mark Purcell, Prasanna Sattigeri, Pin-Yu Chen, Kush R. Varshney
Towards Real-world Deployment of NILM Systems: Challenges and Practices
Junyu Xue, Yu Zhang, Xudong Wang, Yi Wang, Guoming Tang