Technical Challenge
Research into technical challenges across diverse AI applications reveals a common thread: improving model robustness, fairness, and explainability while addressing limitations in data availability and computational efficiency. Current efforts focus on developing and adapting model architectures (e.g., LLMs, YOLO variants, diffusion models) for specific tasks, refining evaluation metrics, and designing robust training and deployment strategies (e.g., federated learning). These advancements are crucial for ensuring the responsible and effective deployment of AI in various sectors, from healthcare and finance to manufacturing and environmental monitoring.
Papers
Proof of Deep Learning: Approaches, Challenges, and Future Directions
Mahmoud Salhab, Khaleel Mershad
The AI Revolution: Opportunities and Challenges for the Finance Sector
Carsten Maple, Lukasz Szpruch, Gregory Epiphaniou, Kalina Staykova, Simran Singh, William Penwarden, Yisi Wen, Zijian Wang, Jagdish Hariharan, Pavle Avramovic
The intersection of video capsule endoscopy and artificial intelligence: addressing unique challenges using machine learning
Shan Guleria, Benjamin Schwartz, Yash Sharma, Philip Fernandes, James Jablonski, Sodiq Adewole, Sanjana Srivastava, Fisher Rhoads, Michael Porter, Michelle Yeghyayan, Dylan Hyatt, Andrew Copland, Lubaina Ehsan, Donald Brown, Sana Syed
Beyond Document Page Classification: Design, Datasets, and Challenges
Jordy Van Landeghem, Sanket Biswas, Matthew B. Blaschko, Marie-Francine Moens