Technical Challenge
Research into technical challenges across diverse AI applications reveals a common thread: improving model robustness, fairness, and explainability while addressing limitations in data availability and computational efficiency. Current efforts focus on developing and adapting model architectures (e.g., LLMs, YOLO variants, diffusion models) for specific tasks, refining evaluation metrics, and designing robust training and deployment strategies (e.g., federated learning). These advancements are crucial for ensuring the responsible and effective deployment of AI in various sectors, from healthcare and finance to manufacturing and environmental monitoring.
Papers
Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI
Ambrish Rawat, Stefan Schoepf, Giulio Zizzo, Giandomenico Cornacchia, Muhammad Zaid Hameed, Kieran Fraser, Erik Miehling, Beat Buesser, Elizabeth M. Daly, Mark Purcell, Prasanna Sattigeri, Pin-Yu Chen, Kush R. Varshney
Towards Real-world Deployment of NILM Systems: Challenges and Practices
Junyu Xue, Yu Zhang, Xudong Wang, Yi Wang, Guoming Tang
"It Might be Technically Impressive, But It's Practically Useless to Us": Practices, Challenges, and Opportunities for Cross-Functional Collaboration around AI within the News Industry
Qing Xiao, Xianzhe Fan, Felix M. Simon, Bingbing Zhang, Motahhare Eslami
LLMs in Education: Novel Perspectives, Challenges, and Opportunities
Bashar Alhafni, Sowmya Vajjala, Stefano Bannò, Kaushal Kumar Maurya, Ekaterina Kochmar
LoRa Communication for Agriculture 4.0: Opportunities, Challenges, and Future Directions
Lameya Aldhaheri, Noor Alshehhi, Irfana Ilyas Jameela Manzil, Ruhul Amin Khalil, Shumaila Javaid, Nasir Saeed, Mohamed-Slim Alouini
Trends, Advancements and Challenges in Intelligent Optimization in Satellite Communication
Philippe Krajsic, Viola Suess, Zehong Cao, Ryszard Kowalczyk, Bogdan Franczyk
SoccerNet 2024 Challenges Results
Anthony Cioppa, Silvio Giancola, Vladimir Somers, Victor Joos, Floriane Magera, Jan Held, Seyed Abolfazl Ghasemzadeh, Xin Zhou, Karolina Seweryn, Mateusz Kowalczyk, Zuzanna Mróz, Szymon Łukasik, Michał Hałoń, Hassan Mkhallati, Adrien Deliège, Carlos Hinojosa, Karen Sanchez, Amir M. Mansourian, Pierre Miralles, Olivier Barnich, Christophe De Vleeschouwer, Alexandre Alahi, Bernard Ghanem, Marc Van Droogenbroeck, Adam Gorski, Albert Clapés, Andrei Boiarov, Anton Afanasiev, Artur Xarles, Atom Scott, ByoungKwon Lim, Calvin Yeung, Cristian Gonzalez, Dominic Rüfenacht, Enzo Pacilio, Fabian Deuser, Faisal Sami Altawijri, Francisco Cachón, HanKyul Kim, Haobo Wang, Hyeonmin Choe, Hyunwoo J Kim, Il-Min Kim, Jae-Mo Kang, Jamshid Tursunboev, Jian Yang, Jihwan Hong, Jimin Lee, Jing Zhang, Junseok Lee, Kexin Zhang, Konrad Habel, Licheng Jiao, Linyi Li, Marc Gutiérrez-Pérez, Marcelo Ortega, Menglong Li, Milosz Lopatto, Nikita Kasatkin, Nikolay Nemtsev, Norbert Oswald, Oleg Udin, Pavel Kononov, Pei Geng, Saad Ghazai Alotaibi, Sehyung Kim, Sergei Ulasen, Sergio Escalera, Shanshan Zhang, Shuyuan Yang, Sunghwan Moon, Thomas B. Moeslund, Vasyl Shandyba, Vladimir Golovkin, Wei Dai, WonTaek Chung, Xinyu Liu, Yongqiang Zhu, Youngseo Kim, Yuan Li, Yuting Yang, Yuxuan Xiao, Zehua Cheng, Zhihao Li
On Synthetic Texture Datasets: Challenges, Creation, and Curation
Blaine Hoak, Patrick McDaniel
A Survey of Inverse Constrained Reinforcement Learning: Definitions, Progress and Challenges
Guiliang Liu, Sheng Xu, Shicheng Liu, Ashish Gaurav, Sriram Ganapathi Subramanian, Pascal Poupart
Alignment of Diffusion Models: Fundamentals, Challenges, and Future
Buhua Liu, Shitong Shao, Bao Li, Lichen Bai, Haoyi Xiong, James Kwok, Sumi Helal, Zeke Xie
How Mature is Requirements Engineering for AI-based Systems? A Systematic Mapping Study on Practices, Challenges, and Future Research Directions
Umm-e- Habiba, Markus Haug, Justus Bogner, Stefan Wagner