Theoretical Understanding
Theoretical understanding in artificial intelligence currently focuses on rigorously analyzing the capabilities and limitations of various models, aiming to bridge the gap between empirical observations and formal guarantees. Research emphasizes developing theoretical frameworks for explaining model behavior, particularly in areas like large language models (LLMs), diffusion models, and graph neural networks, often employing techniques from information theory, optimization, and statistical learning theory to analyze model performance and generalization. These theoretical advancements are crucial for improving model design, enhancing reliability, and addressing concerns about robustness, fairness, and explainability, ultimately impacting the trustworthiness and responsible deployment of AI systems across diverse applications.
Papers
Asynchronous Multi-Model Dynamic Federated Learning over Wireless Networks: Theory, Modeling, and Optimization
Zhan-Lun Chang, Seyyedali Hosseinalipour, Mung Chiang, Christopher G. Brinton
Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice
Toshinori Kitamura, Tadashi Kozuno, Yunhao Tang, Nino Vieillard, Michal Valko, Wenhao Yang, Jincheng Mei, Pierre Ménard, Mohammad Gheshlaghi Azar, Rémi Munos, Olivier Pietquin, Matthieu Geist, Csaba Szepesvári, Wataru Kumagai, Yutaka Matsuo