Theoretical Understanding
Theoretical understanding in artificial intelligence currently focuses on rigorously analyzing the capabilities and limitations of various models, aiming to bridge the gap between empirical observations and formal guarantees. Research emphasizes developing theoretical frameworks for explaining model behavior, particularly in areas like large language models (LLMs), diffusion models, and graph neural networks, often employing techniques from information theory, optimization, and statistical learning theory to analyze model performance and generalization. These theoretical advancements are crucial for improving model design, enhancing reliability, and addressing concerns about robustness, fairness, and explainability, ultimately impacting the trustworthiness and responsible deployment of AI systems across diverse applications.
Papers
Future Directions in the Theory of Graph Machine Learning
Christopher Morris, Fabrizio Frasca, Nadav Dym, Haggai Maron, İsmail İlkan Ceylan, Ron Levie, Derek Lim, Michael Bronstein, Martin Grohe, Stefanie Jegelka
RobustTSF: Towards Theory and Design of Robust Time Series Forecasting with Anomalies
Hao Cheng, Qingsong Wen, Yang Liu, Liang Sun