Time Series
Time series analysis focuses on understanding and modeling data points collected over time, aiming to extract patterns, make predictions, and gain insights from sequential information. Current research emphasizes developing advanced model architectures, such as transformers and recurrent neural networks (RNNs/LSTMs), to handle increasingly complex, high-dimensional, and non-stationary time series data, often incorporating techniques like attention mechanisms and mixture-of-experts models for improved efficiency and accuracy. This field is crucial for numerous applications across diverse domains, including finance, healthcare, and environmental monitoring, enabling better forecasting, anomaly detection, and decision-making based on temporal data.
Papers
Domain Adaptation for Time Series Under Feature and Label Shifts
Huan He, Owen Queen, Teddy Koker, Consuelo Cuevas, Theodoros Tsiligkaridis, Marinka Zitnik
Importance attribution in neural networks by means of persistence landscapes of time series
Aina Ferrà , Carles Casacuberta, Oriol Pujol
Tree-Based Learning on Amperometric Time Series Data Demonstrates High Accuracy for Classification
Jeyashree Krishnan, Zeyu Lian, Pieter E. Oomen, Xiulan He, Soodabeh Majdi, Andreas Schuppert, Andrew Ewing