Time Series
Time series analysis focuses on understanding and modeling data points collected over time, aiming to extract patterns, make predictions, and gain insights from sequential information. Current research emphasizes developing advanced model architectures, such as transformers and recurrent neural networks (RNNs/LSTMs), to handle increasingly complex, high-dimensional, and non-stationary time series data, often incorporating techniques like attention mechanisms and mixture-of-experts models for improved efficiency and accuracy. This field is crucial for numerous applications across diverse domains, including finance, healthcare, and environmental monitoring, enabling better forecasting, anomaly detection, and decision-making based on temporal data.
Papers
Flow Matching with Gaussian Process Priors for Probabilistic Time Series Forecasting
Marcel Kollovieh, Marten Lienen, David Lüdke, Leo Schwinn, Stephan Günnemann
Plots Unlock Time-Series Understanding in Multimodal Models
Mayank Daswani, Mathias M.J. Bellaiche, Marc Wilson, Desislav Ivanov, Mikhail Papkov, Eva Schnider, Jing Tang, Kay Lamerigts, Gabriela Botea, Michael A. Sanchez, Yojan Patel, Shruthi Prabhakara, Shravya Shetty, Umesh Telang
Learning K-U-Net with constant complexity: An Application to time series forecasting
Jiang You, Arben Cela, René Natowicz, Jacob Ouanounou, Patrick Siarry
The Palomar twilight survey of 'Ayló'chaxnim, Atiras, and comets
B. T. Bolin, F. J. Masci, M. W. Coughlin, D. A. Duev, Ž. Ivezić, R. L. Jones, P. Yoachim, T. Ahumada, V. Bhalerao, H. Choudhary, C. Contreras, Y.-C. Cheng, C.M. Copperwheat, K. Deshmukh, C. Fremling, M. Granvik, K. K. Hardegree-Ullman, A. Y. Q. Ho, R. Jedicke, M. Kasliwal, H. Kumar, Z.-Y. Lin, A. Mahabal, A. Monson, J.D. Neill, D. Nesvorný, D. A. Perley, J. N. Purdum, R. Quimby, E. Serabyn, K. Sharma, V. Swain
MotifDisco: Motif Causal Discovery For Time Series Motifs
Josephine Lamp, Mark Derdzinski, Christopher Hannemann, Sam Hatfield, Joost van der Linden
Tackling fluffy clouds: field boundaries detection using time series of S2 and/or S1 imagery
Foivos I. Diakogiannis, Zheng-Shu Zhou, Jeff Wang, Gonzalo Mata, Dave Henry, Roger Lawes, Amy Parker, Peter Caccetta, Rodrigo Ibata, Ondrej Hlinka, Jonathan Richetti, Kathryn Batchelor, Chris Herrmann, Andrew Toovey, John Taylor
Towards Long-Context Time Series Foundation Models
Nina Żukowska, Mononito Goswami, Michał Wiliński, Willa Potosnak, Artur Dubrawski
Time Distributed Deep Learning models for Purely Exogenous Forecasting. Application to Water Table Depth Prediction using Weather Image Time Series
Matteo Salis, Abdourrahmane M. Atto, Stefano Ferraris, Rosa Meo
TX-Gen: Multi-Objective Optimization for Sparse Counterfactual Explanations for Time-Series Classification
Qi Huang, Sofoklis Kitharidis, Thomas Bäck, Niki van Stein
Matrix Profile for Anomaly Detection on Multidimensional Time Series
Chin-Chia Michael Yeh, Audrey Der, Uday Singh Saini, Vivian Lai, Yan Zheng, Junpeng Wang, Xin Dai, Zhongfang Zhuang, Yujie Fan, Huiyuan Chen, Prince Osei Aboagye, Liang Wang, Wei Zhang, Eamonn Keogh